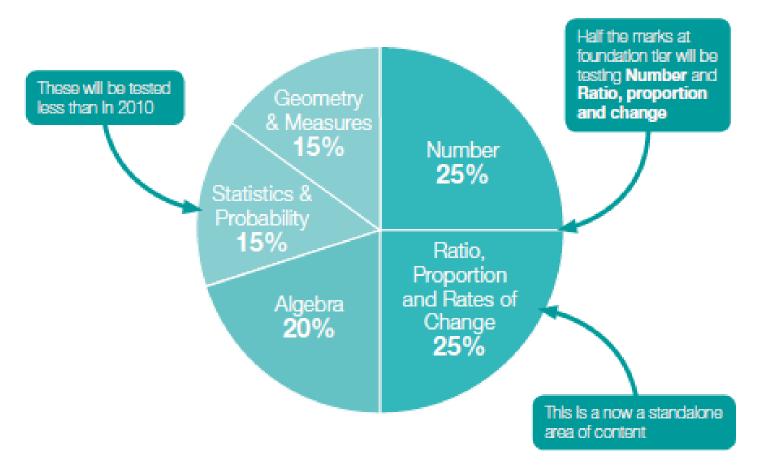
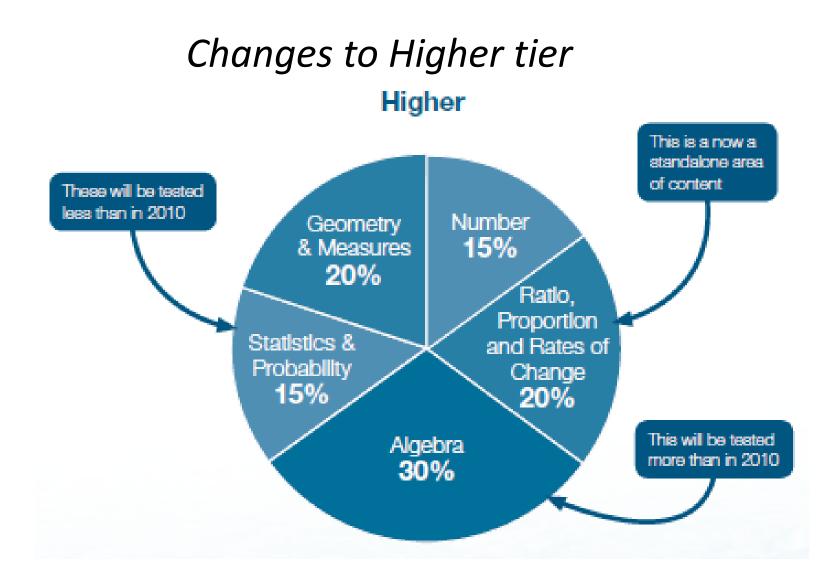

Year 10 Information evening


Maths

Changes to the GCSE and how parents can help

Mr B.Warr - Head of Mathematics



Changes to Foundation tier

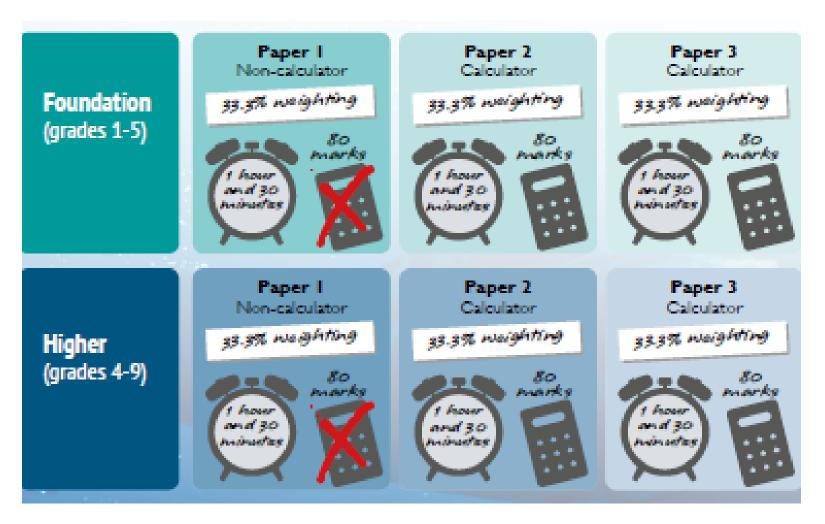
Topics new to Foundation tier (previously Higher tier only in 2010)

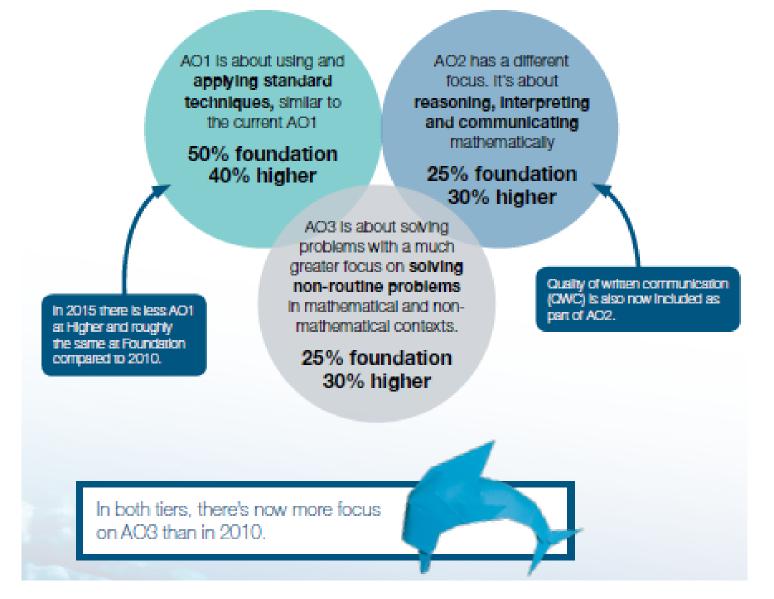
- Index laws: zero and negative powers (numeric and algebraic)
- Standard form
- Compound interest and reverse percentages
- Direct and indirect proportion (numeric and algebraic)
- Expand the product of two linear expressions
- Factorise quadratic expressions in the form x² + bx + c
- Solve linear/linear simultaneous equations
- Solve quadratic equations by factorisation
- Plot cubic and reciprocal graphs, recognise quadratic and cubic graphs
- Trigonometric ratios in 2D right-angled triangles
- Fractional scale enlargements in transformations
- Lengths of arcs and areas of sectors of circles
- Mensuration problems
- Vectors (except geometric problems/proofs)
- Density
- Tree diagrams

Topics new to Higher tier

- Expand the products of more than two binomials
- Interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function' (using formal function notation)
- Deduce turning points by completing the square
- Calculate or estimate gradients of graphs and areas under graphs, and interpret results in real-life cases (not including calculus)
- Simple geometric progressions including surds, and other sequences.
- Deduce expressions to calculate the nth term of quadratic sequences
- Calculate and interpret conditional probabilities through Venn diagrams

Some students likely to sit AQA Further Maths qualification as well.


Topics new to both tiers


- Use inequality notation to specify simple error intervals
- Identify and interpret roots, intercepts, turning points of quadratic functions graphically; deduce roots algebraically
- Fibonacci type sequences, quadratic sequences, geometric progressions
- Relate ratios to linear functions
- Interpret the gradient of a straight line graph as a rate of change
- Know the exact values of sin θ and cos θ for θ = 0°, 30°, 45°, 60° and 90°; know the exact value of tan θ for θ = 0°, 30°, 45° and 60°

Omitted topics

- Trial and improvement
- Tessellations
- Isometric grids
- Imperial units of measure
- Questionnaires
- 3D coordinates
- Rotation and enlargement of functions

Changes to Examinations

Formulae sheets

Students will need to memorise many of the formulae currently given in the formulae sheets at the front of the exam papers. These are:

- Volume of a prism
- Area of a trapezium
- The Quadratic equation (Higher tier only)
- The sine rule, cosine rule, and area of a triangle (Higher tier only).

Here's the formulae sheet that will be provided:

Formulae Sheet
Perimeter, area, surface area and volume formulae
Where r is the radius of the sphere or cone, <i>I</i> is the sizet height of a cone and <i>k</i> is the perpendicular height of a cone:
Curved surface area of a cone = mf
Surface area of a sphere = 4ar*
Volume of a sphere $=\frac{4}{3}\pi r^4$
Volume of a cone = $\frac{1}{2} \pi r^{a} b$
Kinematics formulae
Where a is constant acceleration, a is initial velocity, v is final velocity, z is displacement from the position when $r = 0$ and r is time:
v = u + at
$x = xx + \frac{1}{2}xx^{2}$
$v^* = u^* + 2 \omega v$
Parson Education (Local 2 (2028) (1 - 1) in Market

What can you do to help?

<u>Be positive</u>

"I was never very good at Maths..." "I always hated Maths when I was at school..."

- Encourage students to get into the habit of revising <u>now</u>. We subscribe to the best resource your child can use for revision Mathswatch. Either logon at <u>www.mathswatchvle.com</u> or use the app from the app store. Speak to a member of the maths team if your child does not have their login and password.
- Work through problems at home with your child. They may need the help and you may learn something!
- If your child struggles with maths do they know their tables? Times tables unlock many areas of mathematics – such as arithmetic, fractions and factors. Learning them is not an onerous task and can be done relatively quickly.

- Encourage your child to ask for help with topics that they do not understand
- Download copies of old exam papers and get your child to go through them. The specifications change but the maths doesn't.
 <u>The only way to get better at maths is to do maths.</u>
- Buy CGP revision guides and workbooks as early as possible students then get into the habit of referring to them early in their GCSE course.
- Invest in a scientific calculator and a maths set <u>now</u>. The sooner students get used to a calculators' functions the better.
- Any questions? Please email me at bw@priory.shropshire.sch.uk